PMID:17709419

From OMPwiki
Revision as of 13:37, 1 February 2012 by 165.91.108.55 (talk) (Fill PMID: Page!)
Citation

Autieri, SM, Lins, JJ, Leatham, MP, Laux, DC, Conway, T and Cohen, PS (2007) L-fucose stimulates utilization of D-ribose by Escherichia coli MG1655 DeltafucAO and E. coli Nissle 1917 DeltafucAO mutants in the mouse intestine and in M9 minimal medium.Infect. Immun. 75:5465-75

Abstract

Escherichia coli MG1655 uses several sugars for growth in the mouse intestine. To determine the roles of L-fucose and D-ribose, an E. coli MG1655 DeltafucAO mutant and an E. coli MG1655 DeltarbsK mutant were fed separately to mice along with wild-type E. coli MG1655. The E. coli MG1655 DeltafucAO mutant colonized the intestine at a level 2 orders of magnitude lower than that of the wild type, but the E. coli MG1655 DeltarbsK mutant and the wild type colonized at nearly identical levels. Surprisingly, an E. coli MG1655 DeltafucAO DeltarbsK mutant was eliminated from the intestine by either wild-type E. coli MG1655 or E. coli MG1655 DeltafucAO, suggesting that the DeltafucAO mutant switches to ribose in vivo. Indeed, in vitro growth experiments showed that L-fucose stimulated utilization of D-ribose by the E. coli MG1655 DeltafucAO mutant but not by an E. coli MG1655 DeltafucK mutant. Since the DeltafucK mutant cannot convert L-fuculose to L-fuculose-1-phosphate, whereas the DeltafucAO mutant accumulates L-fuculose-1-phosphate, the data suggest that L-fuculose-1-phosphate stimulates growth on ribose both in the intestine and in vitro. An E. coli Nissle 1917 DeltafucAO mutant, derived from a human probiotic commensal strain, acted in a manner identical to that of E. coli MG1655 DeltafucAO in vivo and in vitro. Furthermore, L-fucose at a concentration too low to support growth stimulated the utilization of ribose by the wild-type E. coli strains in vitro. Collectively, the data suggest that L-fuculose-1-phosphate plays a role in the regulation of ribose usage as a carbon source by E. coli MG1655 and E. coli Nissle 1917 in the mouse intestine.

Links

PubMed Online version:10.1128/IAI.00822-07

Keywords

Animals; Biomass; Colony Count, Microbial; Escherichia coli; Escherichia coli Proteins; Fructose-Bisphosphate Aldolase; Fucose; Gene Deletion; Hexosephosphates; Intestines; Male; Mice; Phosphotransferases (Alcohol Group Acceptor); Ribose; Spectrophotometry

Main Points of the Paper

Please summarize the main points of the paper.

Materials and Methods Used

Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).

Phenotype Annotations

See Help:AnnotationTable for details on how to edit this table.

Phenotype of Taxon Information Genotype Information (if known) Condition Information OMP ID OMP Term Name ECO ID ECO Term Name Notes Status

Notes

References

See Help:References for how to manage references in OMPwiki.