Difference between revisions of "PMID:21181144"

From OMPwiki
(New PMID: Page!)
 
(Fill PMID: Page!)
Line 1: Line 1:
 +
{{RightTOC}}
  
 +
<!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.2750.N4e5e9df10628a-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{|  id="N4e5e9df10628a"  class=" tableEdit PMID_info_table" 
 +
 +
|-
 +
!align=left  |Citation
 +
||
 +
'''Sanchez-Torres, V, Hu, H and Wood, TK'''  (2011) GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli.''Appl. Microbiol. Biotechnol.'' '''90''':651-8
 +
|-
 +
!align=left  |Abstract
 +
||
 +
The second messenger 3'-5'-cyclic diguanylic acid (c-di-GMP) promotes biofilm formation, and c-di-GMP is synthesized by diguanylate cyclases (characterized by a GGDEF domain) and degraded by phosphodiesterases. Here, we evaluated the effect of the 12 E. coli GGDEF-only proteins on biofilm formation and motility. Deletions of the genes encoding the GGDEF proteins YeaI, YedQ, YfiN, YeaJ, and YneF increased swimming motility as expected for strains with reduced c-di-GMP. Alanine substitution in the EGEVF motif of YeaI abolished its impact on swimming motility. In addition, extracellular DNA (eDNA) was increased as expected for the deletions of yeaI (tenfold), yedQ (1.8-fold), and yfiN (3.2-fold). As a result of the significantly enhanced motility, but contrary to current models of decreased biofilm formation with decreased diguanylate cyclase activity, early biofilm formation increased dramatically for the deletions of yeaI (30-fold), yedQ (12-fold), and yfiN (18-fold). Our results indicate that YeaI, YedQ, and YfiN are active diguanylate cyclases that reduce motility, eDNA, and early biofilm formation and contrary to the current paradigm, the results indicate that c-di-GMP levels should be reduced, not increased, for initial biofilm formation so c-di-GMP levels must be regulated in a temporal fashion in biofilms.
 +
|-
 +
!align=left  |Links
 +
||
 +
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=21181144 PubMed]
 +
Online version:[http://dx.doi.org/10.1007/s00253-010-3074-5 10.1007/s00253-010-3074-5]
 +
|-
 +
!align=left  |Keywords
 +
||
 +
Biofilms; Cyclic GMP; Escherichia coli; Escherichia coli Proteins; Gene Deletion; Gene Expression Regulation, Bacterial; Genes, Bacterial; Mutagenesis, Site-Directed; Phosphoric Diester Hydrolases; Phosphorus-Oxygen Lyases; Protein Structure, Tertiary; Second Messenger Systems
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=2ccfb3c7bf1208312f02a69e64bfd9e0.2750.N4e5e9df10628a&page=2750&pagename={{FULLPAGENAMEE}}&type=1&template=PMID_info_table edit table]</span> ||
 +
|}
 +
<!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.2750.N4e5e9df10628a-->
 +
 +
==Main Points of the Paper ==
 +
{{LitSignificance}}
 +
 +
== Materials and Methods Used ==
 +
{{LitMaterials}}
 +
 +
==Phenotype Annotations==
 +
{{AnnotationTableHelp}}
 +
<protect><!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.2750.L4e5e9df128e73-->
 +
<!--
 +
******************************************************************************************
 +
*
 +
*  ** PLEASE DON'T EDIT THIS TABLE DIRECTLY.  Use the edit table link under the table. **
 +
*
 +
****************************************************************************************** -->
 +
{|  id="L4e5e9df128e73"  class=" tableEdit Phenotype_Table_2" 
 +
|-
 +
!|Phenotype of!!Taxon Information!!Genotype Information (if known)!!Condition Information!!OMP ID!!OMP Term Name!!ECO ID!!ECO Term Name!!Notes!!Status
 +
 +
|- class="tableEdit_footer"
 +
|<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=2ccfb3c7bf1208312f02a69e64bfd9e0.2750.L4e5e9df128e73&page=2750&pagename={{FULLPAGENAMEE}}&type=0&template=Phenotype_Table_2 edit table]</span> || || || || || || || || ||
 +
|}
 +
<!--box uid=2ccfb3c7bf1208312f02a69e64bfd9e0.2750.L4e5e9df128e73--></protect>
 +
 +
==Notes==
 +
 +
==References==
 +
{{RefHelp}}
 +
<references/>
 +
 +
 +
[[Category:Publication]]

Revision as of 15:47, 31 August 2011

Citation

Sanchez-Torres, V, Hu, H and Wood, TK (2011) GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli.Appl. Microbiol. Biotechnol. 90:651-8

Abstract

The second messenger 3'-5'-cyclic diguanylic acid (c-di-GMP) promotes biofilm formation, and c-di-GMP is synthesized by diguanylate cyclases (characterized by a GGDEF domain) and degraded by phosphodiesterases. Here, we evaluated the effect of the 12 E. coli GGDEF-only proteins on biofilm formation and motility. Deletions of the genes encoding the GGDEF proteins YeaI, YedQ, YfiN, YeaJ, and YneF increased swimming motility as expected for strains with reduced c-di-GMP. Alanine substitution in the EGEVF motif of YeaI abolished its impact on swimming motility. In addition, extracellular DNA (eDNA) was increased as expected for the deletions of yeaI (tenfold), yedQ (1.8-fold), and yfiN (3.2-fold). As a result of the significantly enhanced motility, but contrary to current models of decreased biofilm formation with decreased diguanylate cyclase activity, early biofilm formation increased dramatically for the deletions of yeaI (30-fold), yedQ (12-fold), and yfiN (18-fold). Our results indicate that YeaI, YedQ, and YfiN are active diguanylate cyclases that reduce motility, eDNA, and early biofilm formation and contrary to the current paradigm, the results indicate that c-di-GMP levels should be reduced, not increased, for initial biofilm formation so c-di-GMP levels must be regulated in a temporal fashion in biofilms.

Links

PubMed Online version:10.1007/s00253-010-3074-5

Keywords

Biofilms; Cyclic GMP; Escherichia coli; Escherichia coli Proteins; Gene Deletion; Gene Expression Regulation, Bacterial; Genes, Bacterial; Mutagenesis, Site-Directed; Phosphoric Diester Hydrolases; Phosphorus-Oxygen Lyases; Protein Structure, Tertiary; Second Messenger Systems

Main Points of the Paper

Please summarize the main points of the paper.

Materials and Methods Used

Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).

Phenotype Annotations

See Help:AnnotationTable for details on how to edit this table.

Phenotype of Taxon Information Genotype Information (if known) Condition Information OMP ID OMP Term Name ECO ID ECO Term Name Notes Status

Notes

References

See Help:References for how to manage references in OMPwiki.