Difference between revisions of "PMID:2185221"
(New PMID: Page!) |
(Fill PMID: Page!) |
||
Line 1: | Line 1: | ||
+ | {{RightTOC}} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3219.E4fe4f5162f8cc--> | ||
+ | <!-- | ||
+ | ****************************************************************************************** | ||
+ | * | ||
+ | * ** PLEASE DON'T EDIT THIS TABLE DIRECTLY. Use the edit table link under the table. ** | ||
+ | * | ||
+ | ****************************************************************************************** --> | ||
+ | {| id="E4fe4f5162f8cc" class=" tableEdit PMID_info_table" | ||
+ | |||
+ | |- | ||
+ | !align=left |Citation | ||
+ | || | ||
+ | '''Rainwater, S and Silverman, PM''' (1990) The Cpx proteins of Escherichia coli K-12: evidence that cpxA, ecfB, ssd, and eup mutations all identify the same gene.''J. Bacteriol.'' '''172''':2456-61 | ||
+ | |- | ||
+ | !align=left |Abstract | ||
+ | || | ||
+ | An existing cpxA(Ts) mutant was resistant to amikacin at levels that inhibited completely the growth of a cpxA+ and a cpxA deletion strain and failed to grow as efficiently on exogenous proline. These properties are similar to those of mutants altered in a gene mapped to the cpxA locus and variously designated as ecfB, ssd, and eup. The amikacin resistance phenotype of the cpxA mutant was inseparable by recombination from the cpxA mutant phenotype (inability to grow at 41 degrees C without exogenous isoleucine and valine) and was recessive to the cpxA+ allele of a recombinant plasmid. Using methods that ensured independent mutations in the cpxA region of the chromosome, we isolated six new amikacin-resistant mutants following nitrosoguanidine mutagenesis. Three-factor crosses mapped the mutations to the cpxA locus. When transferred by P1 transduction to a cpxB11 Hfr strain, each of the mutations conferred the Tra- and Ilv- phenotypes characteristic of earlier cpxA mutants. Two of the new mutations led to a significantly impaired ability to utilize exogenous proline, and four led to partial resistance to colicin A. Two of the new cpxA alleles were recessive to the cpxA+ allele, and four were dominant, albeit to different degrees. On the basis of these data, we argue that cpxA, ecfB, eup, and ssd are all the same gene. We discuss the cellular function of the cpxA gene product in that light. | ||
+ | |- | ||
+ | !align=left |Links | ||
+ | || | ||
+ | [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=2185221 PubMed] | ||
+ | |||
+ | |- | ||
+ | !align=left |Keywords | ||
+ | || | ||
+ | Alleles; Amikacin; Bacterial Proteins; Colicins; Drug Resistance, Microbial; Escherichia coli; Genes, Bacterial; Genetic Linkage; Genotype; Mutation; Plasmids | ||
+ | |||
+ | |- class="tableEdit_footer" | ||
+ | |<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3219.E4fe4f5162f8cc&page=3219&pagename={{FULLPAGENAMEE}}&type=1&template=PMID_info_table edit table]</span> || | ||
+ | |} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3219.E4fe4f5162f8cc--> | ||
+ | |||
+ | ==Main Points of the Paper == | ||
+ | {{LitSignificance}} | ||
+ | |||
+ | == Materials and Methods Used == | ||
+ | {{LitMaterials}} | ||
+ | |||
+ | ==Phenotype Annotations== | ||
+ | {{AnnotationTableHelp}} | ||
+ | <protect><!--box uid=d41d8cd98f00b204e9800998ecf8427e.3219.E4fe4f51632c79--> | ||
+ | <!-- | ||
+ | ****************************************************************************************** | ||
+ | * | ||
+ | * ** PLEASE DON'T EDIT THIS TABLE DIRECTLY. Use the edit table link under the table. ** | ||
+ | * | ||
+ | ****************************************************************************************** --> | ||
+ | {| id="E4fe4f51632c79" class=" tableEdit Phenotype_Table_2" | ||
+ | |- | ||
+ | !|Phenotype of!!Taxon Information!!Genotype Information (if known)!!Condition Information!!OMP ID!!OMP Term Name!!ECO ID!!ECO Term Name!!Notes!!Status | ||
+ | |||
+ | |- class="tableEdit_footer" | ||
+ | |<span class="tableEdit_editLink plainlinks">[{{SERVER}}{{SCRIPTPATH}}?title=Special:TableEdit&id=d41d8cd98f00b204e9800998ecf8427e.3219.E4fe4f51632c79&page=3219&pagename={{FULLPAGENAMEE}}&type=0&template=Phenotype_Table_2 edit table]</span> || || || || || || || || || | ||
+ | |} | ||
+ | <!--box uid=d41d8cd98f00b204e9800998ecf8427e.3219.E4fe4f51632c79--></protect> | ||
+ | |||
+ | ==Notes== | ||
+ | |||
+ | ==References== | ||
+ | {{RefHelp}} | ||
+ | <references/> | ||
+ | |||
+ | |||
+ | [[Category:Publication]] |
Revision as of 16:43, 22 June 2012
Citation |
Rainwater, S and Silverman, PM (1990) The Cpx proteins of Escherichia coli K-12: evidence that cpxA, ecfB, ssd, and eup mutations all identify the same gene.J. Bacteriol. 172:2456-61 |
---|---|
Abstract |
An existing cpxA(Ts) mutant was resistant to amikacin at levels that inhibited completely the growth of a cpxA+ and a cpxA deletion strain and failed to grow as efficiently on exogenous proline. These properties are similar to those of mutants altered in a gene mapped to the cpxA locus and variously designated as ecfB, ssd, and eup. The amikacin resistance phenotype of the cpxA mutant was inseparable by recombination from the cpxA mutant phenotype (inability to grow at 41 degrees C without exogenous isoleucine and valine) and was recessive to the cpxA+ allele of a recombinant plasmid. Using methods that ensured independent mutations in the cpxA region of the chromosome, we isolated six new amikacin-resistant mutants following nitrosoguanidine mutagenesis. Three-factor crosses mapped the mutations to the cpxA locus. When transferred by P1 transduction to a cpxB11 Hfr strain, each of the mutations conferred the Tra- and Ilv- phenotypes characteristic of earlier cpxA mutants. Two of the new mutations led to a significantly impaired ability to utilize exogenous proline, and four led to partial resistance to colicin A. Two of the new cpxA alleles were recessive to the cpxA+ allele, and four were dominant, albeit to different degrees. On the basis of these data, we argue that cpxA, ecfB, eup, and ssd are all the same gene. We discuss the cellular function of the cpxA gene product in that light. |
Links | |
Keywords |
Alleles; Amikacin; Bacterial Proteins; Colicins; Drug Resistance, Microbial; Escherichia coli; Genes, Bacterial; Genetic Linkage; Genotype; Mutation; Plasmids |
edit table |
Main Points of the Paper
Please summarize the main points of the paper.
Materials and Methods Used
Please list the materials and methods used in this paper (strains, plasmids, antibodies, etc).
Phenotype Annotations
See Help:AnnotationTable for details on how to edit this table.
Phenotype of | Taxon Information | Genotype Information (if known) | Condition Information | OMP ID | OMP Term Name | ECO ID | ECO Term Name | Notes | Status |
---|---|---|---|---|---|---|---|---|---|
edit table |
Notes
References
See Help:References for how to manage references in OMPwiki.